자바를 이용하여 개발하는 개발자라면 누구나 자바 바이트코드가 JRE 위에서 동작한다는 사실을 잘 알고 있습니다. 이 JRE에서 가장 중요한 요소는 자바 바이트코드를 해석하고 실행하는 JVM(Java Virtual Machine)입니다. JRE는 자바 API와 JVM으로 구성되며, JVM의 역할은 자바 애플리케이션을 클래스 로더(Class Loader)를 통해 읽어 들여서 자바 API와 함께 실행하는 것입니다.

 

JVM(Java Virtual Machine)

JVM은 운영체제 위에서 동작하는 프로세스로 자바 코드를 컴파일해서 얻은 바이트 코드를 해당 운영체제가 이해할 수 있는 기계어로 바꿔 실행시켜주는 역할을 한다. (java 언어와 직접적인 연관이 있는 것이 아니라, class 파일만 있으면 실행해 준다. ex. 코틀린 등)

JVM에 대해 알아보기 전에 먼저 Java와 프로그램 실행 과정에 대해 알아보자.

Java의 가장 큰 특징 중 하나는 하드웨어/OS 에 상관없이 컴파일된 바이트코드가 플랫폼 독립적이라는 점이다.

(이 자바 바이트코드가 자바 코드를 배포하는 가장 작은 단위이다.)

그 이유는 다른 언어들과 다르게 자바는 OS 위에 JVM이 돌아가고, JVM이 컴파일된 코드(바이트코드)를 실행시켜주기 때문이다.

(참고로 JVM은 H/W와 OS 위에서 실행되기 때문에 JVM 자체는 플랫폼에 종속적 즉, 플랫폼에 따라 호환되는 JVM을 실행시켜줘야함)

 

좀 더 자세히 소스코드 실행 과정을 보자

1. .java 소스 코드 파일을 작성

2. 코드를 실행하게 되면 Java 컴파일러를 호출한다. 컴파일러는 코드에서 구문 오류 및 기타 컴파일 타임 오류를 확인하고, 오류가없는 경우에는 바이트 코드라는 중간 코드 .class 파일로 변환한다.

  • 바이트 코드는 플랫폼에 독립적이다. 또한, 바이트 코드는 중간 코드이므로 user/HW/OS 계층이 아닌 JVM에서만 이해할 수 있다.

3. 바이트 코드는 class loader (JVM 내부의 또 다른 내장 프로그램)에 의해 JVM으로 로드 된다.

  • 클래스로더는 동적로딩(Dynamic Loading)을 통해 필요한 클래스들을 로딩 및 링크하여 런타임 데이터 영역(Runtime Data area), 즉 JVM의 메모리에 올린다.

4. 바이트 코드 검증 도구(JVM 내부에 내장 된 프로그램)가 바이트 코드의 무결성을 확인하고 문제가 발견되지 않으면 인터프리터에 전달

  • JIT 컴파일러의 경우 기계 코드로 변환하기 위해 바이트 코드가 인터프리터에 전달되기 전, 전체 코드를 스캔하여 최적화 할 수 있는지 확인 (중복 제거 등)
  • JIT 컴파일러는 코드에 필요한 패키지만 포함 하거나, 코드 최적화, 중복 코드 제거 등과 같은 일을 하며 전체적으로 프로세스를 매우 빠르고 효율적으로 만든다.
  • JIT 컴파일러는 종류 마다 다르게 작동하며, optional 하다. (매번 호출되는 것은 아님)

5. JVM 내부의 인터프리터는 바이트 코드의 각 행을 실행 가능한 기계 코드로 변환하고, 이를 실행할 CPU와 같은 OS / 하드웨어에 전달

  • 실행엔진(Execution Engine)은 JVM메모리에 올라온 바이트 코드들을 명령어 단위로 하나씩 가져와서 실행

 

 

JVM 내부 구조에 대해 조금 더 자세히 살펴보면 아래와 같다.

JVM은 크게 Class Loader,GC, Runtime Data Area, Excute engine 세가지로 나뉜다. (여기에 GC까지 4가지로 보기도 한다)

위에서도 볼 수 있듯이, 클래스 로더(Class Loader)가 컴파일된 자바 바이트코드를 런타임 데이터 영역(Runtime Data Areas)에 로드하고, 실행 엔진(Execution Engine)이 자바 바이트코드를 실행한다.

 

1) 클래스 로더

자바는 동적 로드, 즉 컴파일타임이 아니라 런타임에 클래스를 처음으로 참조할 때 해당 클래스를 로드하고 링크하는 특징이 있다. 이 동적 로드를 담당하는 부분이 JVM의 클래스 로더이다. 아래는 클래스 로더의 특징이다.

  • 계층 구조: 클래스 로더끼리 부모-자식 관계를 이루어 계층 구조로 생성된다. 최상위 클래스 로더는 부트스트랩 클래스 로더(Bootstrap Class Loader)이다.
  • 위임 모델: 계층 구조를 바탕으로 클래스 로더끼리 로드를 위임하는 구조로 동작한다. 클래스를 로드할 때 먼저 상위 클래스 로더를 확인하여 상위 클래스 로더에 있다면 해당 클래스를 사용하고, 없다면 로드를 요청받은 클래스 로더가 클래스를 로드한다.
  • 가시성(visibility) 제한: 하위 클래스 로더는 상위 클래스 로더의 클래스를 찾을 수 있지만, 상위 클래스 로더는 하위 클래스 로더의 클래스를 찾을 수 없다.
  • 언로드 불가: 클래스 로더는 클래스를 로드할 수는 있지만 언로드할 수는 없다. 언로드 대신, 현재 클래스 로더를 삭제하고 아예 새로운 클래스 로더를 생성하는 방법을 사용할 수 있다.

각 클래스 로더는 로드된 클래스들을 보관하는 네임스페이스(namespace)를 갖는다. 클래스를 로드할 때 이미 로드된 클래스인지 확인하기 위해서 네임스페이스에 보관된 FQCN(Fully Qualified Class Name)을 기준으로 클래스를 찾는다. 비록 FQCN이 같더라도 네임스페이스가 다르면, 즉 다른 클래스 로더가 로드한 클래스이면 다른 클래스로 간주된다.

클래스 로더 위임 모델

 

클래스 로더가 클래스 로드를 요청받으면, 클래스 로더 캐시, 상위 클래스 로더, 자기 자신의 순서로 해당 클래스가 있는지 확인한다. 즉, 이전에 로드된 클래스인지 클래스 로더 캐시를 확인하고, 없으면 상위 클래스 로더를 거슬러 올라가며 확인한다. 부트스트랩 클래스 로더까지 확인해도 없으면 요청받은 클래스 로더가 파일 시스템에서 해당 클래스를 찾는다.

  • 부트스트랩 클래스 로더: JVM을 기동할 때 생성되며, Object 클래스들을 비롯하여 자바 API들을 로드한다. 다른 클래스 로더와 달리 자바가 아니라 네이티브 코드로 구현되어 있다.
  • 익스텐션 클래스 로더(Extension Class Loader): 기본 자바 API를 제외한 확장 클래스들을 로드한다. 다양한 보안 확장 기능 등을 여기에서 로드하게 된다.
  • 시스템 클래스 로더(System Class Loader): 부트스트랩 클래스 로더와 익스텐션 클래스 로더가 JVM 자체의 구성 요소들을 로드하는 것이라 한다면, 시스템 클래스 로더는 애플리케이션의 클래스들을 로드한다고 할 수 있다. 사용자가 지정한 $CLASSPATH 내의 클래스들을 로드한다.
  • 사용자 정의 클래스 로더(User-Defined Class Loader): 애플리케이션 사용자가 직접 코드 상에서 생성해서 사용하는 클래스 로더이다.

웹 애플리케이션 서버(WAS)와 같은 프레임워크는 웹 애플리케이션들, 엔터프라이즈 애플리케이션들이 서로 독립적으로 동작하게 하기 위해 사용자 정의 클래스 로더를 사용한다. 즉, 클래스 로더의 위임 모델을 통해 애플리케이션의 독립성을 보장하는 것이다. 이와 같은 WAS의 클래스 로더 구조는 WAS 벤더마다 조금씩 다른 형태의 계층 구조를 사용하고 있다.

클래스 로더가 아직 로드되지 않은 클래스를 찾으면, 다음 그림과 같은 과정을 거쳐 클래스를 로드하고 링크하고 초기화한다.

 

클래스 로드 매커니즘

  • 로드: 클래스를 파일에서 가져와서 JVM의 메모리에 로드한다.
  • 검증(Verifying): 읽어 들인 클래스가 자바 언어 명세(Java Language Specification) 및 JVM 명세에 명시된 대로 잘 구성되어 있는지 검사한다. 클래스 로드의 전 과정 중에서 가장 까다로운 검사를 수행하는 과정으로서 가장 복잡하고 시간이 많이 걸린다. JVM TCK의 테스트 케이스 중에서 가장 많은 부분이 잘못된 클래스를 로드하여 정상적으로 검증 오류를 발생시키는지 테스트하는 부분이다.
  • 준비(Preparing): 클래스가 필요로 하는 메모리를 할당하고, 클래스에서 정의된 필드, 메서드, 인터페이스들을 나타내는 데이터 구조를 준비한다.
  • 분석(Resolving): 클래스의 상수 풀 내 모든 심볼릭 레퍼런스를 다이렉트 레퍼런스로 변경한다.
  • 초기화: 클래스 변수들을 적절한 값으로 초기화한다. 즉, static initializer들을 수행하고, static 필드들을 설정된 값으로 초기화한다.

 

2) 런타임 데이터 영역 (=메모리)

런타임 데이터 영역

런타임 데이터 영역은 JVM이라는 프로그램이 운영체제 위에서 실행되면서 할당받는 메모리 영역이다. 런타임 데이터 영역은 6개의 영역으로 나눌 수 있다. 이중 PC 레지스터(PC Register), JVM 스택(JVM Stack), 네이티브 메서드 스택(Native Method Stack)은 스레드마다 하나씩 생성되며 힙(Heap), 메서드 영역(Method Area), 런타임 상수 풀(Runtime Constant Pool)은 모든 스레드가 공유해서 사용한다.

  • PC 레지스터: PC(Program Counter) 레지스터는 각 스레드마다 하나씩 존재하며 스레드가 시작될 때 생성된다. PC 레지스터는 현재 수행 중인 JVM 명령의 주소를 갖는다.

JVM 스택

  • JVM 스택: JVM 스택은 각 스레드마다 하나씩 존재하며 스레드가 시작될 때 생성된다. 스택 프레임(Stack Frame)이라는 구조체를 저장하는 스택으로, JVM은 오직 JVM 스택에 스택 프레임을 추가하고(push) 제거하는(pop) 동작만 수행한다. 예외 발생 시 printStackTrace() 등의 메서드로 보여주는 Stack Trace의 각 라인은 하나의 스택 프레임을 표현한다.
    • 스택 프레임: JVM 내에서 메서드가 수행될 때마다 하나의 스택 프레임이 생성되어 해당 스레드의 JVM 스택에 추가되고 메서드가 종료되면 스택 프레임이 제거된다. 각 스택 프레임은 지역 변수 배열(Local Variable Array), 피연산자 스택(Operand Stack), 현재 실행 중인 메서드가 속한 클래스의 런타임 상수 풀에 대한 레퍼런스를 갖는다. 지역 변수 배열, 피연산자 스택의 크기는 컴파일 시에 결정되기 때문에 스택 프레임의 크기도 메서드에 따라 크기가 고정된다.
    • 지역 변수 배열: 0부터 시작하는 인덱스를 가진 배열이다. 0은 메서드가 속한 클래스 인스턴스의 this 레퍼런스이고, 1부터는 메서드에 전달된 파라미터들이 저장되며, 메서드 파라미터 이후에는 메서드의 지역 변수들이 저장된다.
    • 피연산자 스택: 메서드의 실제 작업 공간이다. 각 메서드는 피연산자 스택과 지역 변수 배열 사이에서 데이터를 교환하고, 다른 메서드 호출 결과를 추가하거나(push) 꺼낸다(pop). 피연산자 스택 공간이 얼마나 필요한지는 컴파일할 때 결정할 수 있으므로, 피연산자 스택의 크기도 컴파일 시에 결정된다.
    • 런타임 상수 풀
  • 네이티브 메서드 스택: 자바 외의 언어로 작성된 네이티브 코드를 위한 스택이다. 즉, JNI(Java Native Interface)를 통해 호출하는 C/C++ 등의 코드를 수행하기 위한 스택으로, 언어에 맞게 C 스택이나 C++ 스택이 생성된다.
  • 메서드 영역: 메서드 영역은 모든 스레드가 공유하는 영역으로 JVM이 시작될 때 생성된다. JVM이 읽어 들인 각각의 클래스와 인터페이스에 대한 런타임 상수 풀, 필드와 메서드 정보, Static 변수, 메서드의 바이트코드 등을 보관한다. 메서드 영역은 JVM 벤더마다 다양한 형태로 구현할 수 있으며, 오라클 핫스팟 JVM(HotSpot JVM)에서는 흔히 Permanent Area, 혹은 Permanent Generation(PermGen)이라고 불린다. 메서드 영역에 대한 가비지 컬렉션은 JVM 벤더의 선택 사항이다.
  • 런타임 상수 풀: 클래스 파일 포맷에서 constant_pool 테이블에 해당하는 영역이다. 메서드 영역에 포함되는 영역이긴 하지만, JVM 동작에서 가장 핵심적인 역할을 수행하는 곳이기 때문에 JVM 명세에서도 따로 중요하게 기술한다. 각 클래스와 인터페이스의 상수뿐만 아니라, 메서드와 필드에 대한 모든 레퍼런스까지 담고 있는 테이블이다. 즉, 어떤 메서드나 필드를 참조할 때 JVM은 런타임 상수 풀을 통해 해당 메서드나 필드의 실제 메모리상 주소를 찾아서 참조한다.
  • 힙: 인스턴스 또는 객체를 저장하는 공간으로 가비지 컬렉션 대상이다. JVM 성능 등의 이슈에서 가장 많이 언급되는 공간이다. 힙 구성 방식이나 가비지 컬렉션 방법 등은 JVM 벤더의 재량이다.

 

3) 실행 엔진

클래스 로더를 통해 JVM 내의 런타임 데이터 영역에 배치된 바이트코드는 실행 엔진에 의해 실행된다. 실행 엔진은 자바 바이트코드를 명령어 단위로 읽어서 실행한다. CPU가 기계 명령어을 하나씩 실행하는 것과 비슷하다. 바이트코드의 각 명령어는 1바이트짜리 OpCode와 추가 피연산자로 이루어져 있으며, 실행 엔진은 하나의 OpCode를 가져와서 피연산자와 함께 작업을 수행한 다음, 다음 OpCode를 수행하는 식으로 동작한다.

그런데 자바 바이트코드는 기계가 바로 수행할 수 있는 언어보다는 비교적 인간이 보기 편한 형태로 기술된 것이다. 그래서 실행 엔진은 이와 같은 바이트코드를 실제로 JVM 내부에서 기계가 실행할 수 있는 형태로 변경하며, 그 방식은 다음 두 가지가 있다.

  • 인터프리터: 바이트코드 명령어를 하나씩 읽어서 해석하고 실행한다. 하나씩 해석하고 실행하기 때문에 바이트코드 하나하나의 해석은 빠른 대신 인터프리팅 결과의 실행은 느리다는 단점을 가지고 있다. 흔히 얘기하는 인터프리터 언어의 단점을 그대로 가지는 것이다. 즉, 바이트코드라는 '언어'는 기본적으로 인터프리터 방식으로 동작한다.
  • JIT(Just-In-Time) 컴파일러: 인터프리터의 단점을 보완하기 위해 도입된 것이 JIT 컴파일러이다. 인터프리터 방식으로 실행하다가 적절한 시점에 바이트코드 전체를 컴파일하여 네이티브 코드로 변경하고, 이후에는 해당 메서드를 더 이상 인터프리팅하지 않고 네이티브 코드로 직접 실행하는 방식이다. 네이티브 코드를 실행하는 것이 하나씩 인터프리팅하는 것보다 빠르고, 네이티브 코드는 캐시에 보관하기 때문에 한 번 컴파일된 코드는 계속 빠르게 수행되게 된다.

JIT 컴파일러가 컴파일하는 과정은 바이트코드를 하나씩 인터프리팅하는 것보다 훨씬 오래 걸리므로, 만약 한 번만 실행되는 코드라면 컴파일하지 않고 인터프리팅하는 것이 훨씬 유리하다. 따라서, JIT 컴파일러를 사용하는 JVM들은 내부적으로 해당 메서드가 얼마나 자주 수행되는지 체크하고, 일정 정도를 넘을 때에만 컴파일을 수행한다.

 

 

 

마지막으로 , JVM의 특징으로는 아래와 같은 것들이 있다.

  • 스택 기반의 가상 머신 (<-> 레지스터 기반 동작)
  • 심볼릭 레퍼런스: 기본 자료형(primitive data type)을 제외한 모든 타입(클래스와 인터페이스)을 명시적인 메모리 주소 기반의 레퍼런스가 아니라 심볼릭 레퍼런스를 통해 참조한다.
  • 가비지 컬렉션(garbage collection): 클래스 인스턴스는 사용자 코드에 의해 명시적으로 생성되고 가비지 컬렉션에 의해 자동으로 파괴된다.
  • 기본 자료형을 명확하게 정의하여 플랫폼 독립성 보장: C/C++ 등의 전통적인 언어는 플랫폼에 따라 int 형의 크기가 변하는데 반해, JVM은 기본 자료형을 명확하게 정의하여 호환성을 유지하고 플랫폼 독립성을 보장한다.
  • 네트워크 바이트 오더(network byte order): 자바 클래스 파일은 네트워크 바이트 오더를 사용한다. 인텔 x86 아키텍처가 사용하는 리틀 엔디안이나, RISC 계열 아키텍처가 주로 사용하는 빅 엔디안 사이에서 플랫폼 독립성을 유지하려면 고정된 바이트 오더를 유지해야 하므로 네트워크 전송 시에 사용하는 바이트 오더인 네트워크 바이트 오더를 사용한다. 네트워크 바이트 오더는 빅 엔디안이다.

 

Garbage Collector

이제 JVM의 가장 큰 특징, 가비지 컬렉터에 대해 알아보자.

gc는 동적으로 할당된 메모리 영역 중 사용하지 않는 영역을 방지하여 해제하는 기능을 말한다. (자바에서 동적으로 할당된 메모리 = 힙 영역)

 

Java GC는 객체가 가비지인지 판별하기 위해서 reachability라는 개념을 사용한다. 어떤 객체에 유효한 참조가 있으면 'reachable'로, 없으면 'unreachable'로 구별하고, unreachable 객체를 가비지로 간주해 GC를 수행한다. 한 객체는 여러 다른 객체를 참조하고, 참조된 다른 객체들도 마찬가지로 또 다른 객체들을 참조할 수 있으므로 객체들은 참조 사슬을 이룬다. 이런 상황에서 유효한 참조 여부를 파악하려면 항상 유효한 최초의 참조가 있어야 하는데 이를 객체 참조의 root set이라고 한다.

 

https://d2.naver.com/helloworld/329631 런타임 데이터 영역

런타임 데이터 영역은 위와 같이 스레드가 차지하는 영역들과, 객체를 생성 및 보관하는 하나의 큰 힙, 클래스 정보가 차지하는 영역인 메서드 영역, 크게 세 부분으로 나눌 수 있다. 위 그림에서 객체에 대한 참조는 화살표로 표시되어 있다.

 

힙에 있는 객체들에 대한 참조는 다음 4가지 종류 중 하나이다.

  • 힙 내의 다른 객체에 의한 참조
  • Java 스택, 즉 Java 메서드 실행 시에 사용하는 지역 변수와 파라미터들에 의한 참조
  • 네이티브 스택, 즉 JNI(Java Native Interface)에 의해 생성된 객체에 대한 참조
  • 메서드 영역의 정적 변수에 의한 참조

이들 중 힙 내의 다른 객체에 의한 참조를 제외한 나머지 3개가 root set으로, reachability를 판가름하는 기준이 된다.

 

reachability를 더 자세히 설명하기 위해 root set과 힙 내의 객체를 중심으로 다시 그리면 다음과 같다.

https://d2.naver.com/helloworld/329631 reachability

위 그림에서 보듯, root set으로부터 시작한 참조 사슬에 속한 객체들은 reachable 객체이고, 이 참조 사슬과 무관한 객체들이 unreachable 객체로 GC 대상이다. 오른쪽 아래 객체처럼 reachable 객체를 참조하더라도, 다른 reachable 객체가 이 객체를 참조하지 않는다면 이 객체는 unreachable 객체이다.

 

 

그렇다면 GC 매커니즘을 보자. 아래와 같은 메모리 영역에 대해,

  • Stack: 정적으로 할당한 메모리 영역으로, 원시 타입의 데이터가 값과 함께 할당된다. 힙 영역에 생성된 Object 타입의 데이터의 참조값 할당
  • Heap: 동적으로 할당한 메모리 영역으로, 모든 Object 타입의 데이터가 할당된다. 힙 영역의 Object를 가리키는 참조 변수가 스택 영역에 저장된다. 힙 영역은 New Generation 영역과 Old Generation 영역으로 이루어져 있다.
    • New generation:
      • Eden: 새로운 객체는 Eden 영역에 할당된다. Eden영역이 모두 사용되면 GC가 발생하는데, 이때 일어나는 가비지 컬렉터가 Minor GC라고 한다.
      • Servival 0: 이 이후에 살아남은 객체(Eden 영역의 Reachable 객체)를 Servival 0 영역으로 이동한다. Eden영역의 Unreachable 객체는 메모리에서 해제한다. Servival 0 영역이 다 차면 또 다시 Mark & Sweep 과정을 반복한다.
      • Servival 1: Servival 0 영역에서 살아남은 객체들을 Survival 1 영역으로 이동한다. 이동한 객체는 Age값 증가한다. 그 다음에 새로운 객체가 Eden 영역으로 들어와서 Minor GC가 발생하면 아까처럼 Servival 0 으로 가는 것이 아니라, 객체가 차 있는 곳으로 이동하기 때문에 바로 Servival 1 로 이동하게 된다. (즉, Servival 0/1중 둘 중 하나는 항상 비어있는 상태로 유지된다.) 만약 Servival 1 이 다 차면 Servival 1에 대해 Mark & Sweep 과정이 일어나고 Servival 0 으로 이동 + Age 1 증가하게 된다.
    • Old generation: Servival 영역의 Age 값이 증가하다가 특정 Age 값을 넘어서면, 그 때 Old generation으로 이동한다. 이 과정을 Promotion 과정이라고 한다. 만약 Old generation영역이 다 사용되면 Major GC가 발생한다.
    • -> 이 과정이 반복되면서 가비지 컬렉터가 메모리를 관리한다.

Garbage Collecter 과정을 Mark & Sweep이라고 하는데,

  • 가비지 컬렉터가 스택 영역의 모든 변수를 스캔하면서 각각 어떤 객체를 참조하고 있는지 찾아서 마킹한다.
  • Reachable Object가 참조하고 있는 객체도 찾아서 마킹한다.
  • 마킹되지 않은 객체를 힙 영역에서 제거한다.

 

 

용어

  • JRE(Java Runtime Environment): JVM + 라이브러리
    • 자바 애플리케이션을 실행할 수 있도록 구성된 배포판 (최소한의 배포 단위)
    • JVM과 핵심 라이브러리 및 자바 런타임 환경에서 사용하는 프로퍼티 세팅이나 리소스 파일을 가지고 있다.
    • 개발 관련 도구는 포함하지 않는다. (java compile을 위한 javac 등은 없음)
  • JDK (Java Development Kit): JRE + 개발 툴
    • JRE + 개발에 필요할 툴
    • 소스 코드를 작성할 때 사용하는 자바 언어는 플랫폼에 독립적.
    • 오라클은 자바 11부터는 JDK만 제공하며 JRE를 따로 제공하지 않는다.
    • Write Once Run Anywhere

 

Reference

docs.oracle.com/javase/specs/jvms/se8/html/index.html

 

The Java® Virtual Machine Specification

Tim Lindholm Frank Yellin Gilad Bracha Alex Buckley

docs.oracle.com

d2.naver.com/helloworld/329631

d2.naver.com/helloworld/1230

 

+ Recent posts